Crouzon Syndrome: An Unusual Genetic Trait

Abstract

Crouzon syndrome is rare developmental deformity, which is described in the clinical entity of craniosynostosis. These are heterogeneous group of conditions, characterized by premature fusion of cranial sutures. The concern relating these cases is primarily esthetics with problems ranging from mild to severe variability. It is important to treat these patient as early as possible for Functional, esthetic and psychological reasons. A series of cases has been reported below which were diagnosed as Crouzon's syndrome based on clinical and radiologic findings.

Key Words

Craniofacial; craniosynostosis; crouzon syndrome

Dr Ashford Lidiya George¹, Dr Sarpangala Mythri², Dr Sajida Aboobacker³, Dr Nagesh Kumar S⁴

¹Senior Lecturer, Department of Oral and Maxillofacial Surgery, Kannur Dental College, Kannur, Kerala, India

²Senior Lecturer, Department of Periodontology, Kannur Dental College, Kannur, Kerala, India

³Senior Lecturer, Department of Periodontology, Kannur Dental College, Kannur, Kerala, India

⁴Senior Lecturer, Department of Conservative and Endodontics, Kannur Dental College, Kannur, Kerala, India

INTRODUCTION

Craniofacial anomalies represent a distinct group of deformities involving the craniofacial skeleton. Although unusual, it usually effects not only the normal functioning of the effected individual but also their social well being.[1] Premature fusion of one or more sutures due to lack of growth at the fused suture and overgrowth at the non fused suture is described as craniosynostosis. [2] Craniosynostosis includes Apert, Crouzon, Pfeiffer, Carpenter, and Saethre-Chotzen. Recognizing and treating the problem is important as it can lead to numerous complications.^[3] Crouzon's syndrome represent a rare genetic trait first described in 1912 by a French neurosurgeon Octave. The condition also termed as Type I Crouzon's Disease /Craniofacial dysarthrosis /craniofacial dysostosis. [4] It commonly effects the craniofacial region and is usually diagnosed during birth or early childhood.^[5] The incidence is 1:25000 live birth with both gender equally effected and with a positive family history. The mutation in fibroblast growth factor 2 gene (FGFR2), is responsible for the deformities observed. Diagnosis is made based on clinical history and radiographic examination. [6]

CASE REPORTS

CASE 1

A 4 year old female patient reported to our Dental Hospital accompanied by her mother, with a chief complaint of chipping in the upper front teeth since 3 months. Her medical history revealed that she had undergone Tarsorraphy 3 years ago following avulsion of her left eye and reported history of wheezing since 2 years and is on homeopathic medicines. History of snoring present since early childhood. There was no significant family history; no adverse or deleterious habits. On general physical examination no syndactyly of fingers or toes were noted. On extra oral examination, patient had a concave profile with brachycephaly associated with gross asymmetry, nasal bridge was depressed, aduncous nose giving a parrot beak appearance, hypertelorism with exopthalmosis of eyes were seen (Fig 1 & Fig. 2). History from her parents revealed that these features were present since birth. On intraoral examination brownish discoloration was seen along the mesial surface of 51, 61. Mesial terminal plane with anterior cross bite was seen. There was no abnormality detected in the soft tissues. On palpation inspectory findings were confirmed (Fig. 3).

CASE 2 & 3:

Two Siblings from the same family reported to dental hospital after a month for routine dental checkup. On extra oral examination both had mild brachycephaly, maxillary retrusion, malar deficiency,

Fig. 1: Extra-oral frontal view

Fig. 3: Intra-oral view

Fig. 5: Extra-oral lateral view

Fig. 7: Lateral skull view

hypertelorism, mild ocular proptosis and a beaked nose (Fig. 4 & Fig. 5). Intra-oral examination revealed a Class III incisal relationship with an anterior open bite from teeth 13 to 23.U-shaped arch with mild crowding of the lower arch was noted. Masticatory function was normal with no evidence of temporomandibular dysfunction. No other

Fig. 2: Extra-oral lateral view

Fig. 4: Extra-oral frontal view

Fig. 6: Posterio-anterior view

anomalies such as polydactyl or syndactyl were noted. Provisional diagnosis for all these three cases was given as Crouzon syndrome. Comprehensive history of the family was taken to discover if any other members were affected. While in case 1 this was the first incidence in the family, cases 2 & 3 reported with a positive family history where Mother and her father were also known to have similar facial appearance. Differential diagnosis of Apert syndrome, Pfeiffer, Carpenter and Sayre-Chotzen syndrome which has similar clinical presentation were considered. Mutations in FGFR2 are observed in these conditions which lead to the development of synostosis of the cranial sutures and Symmetric syndactylus of the hands and feet generally involving the second, third and fourth

Table I: Abnormalities associated with Crouzon syndrome

Cranium

Craniosynostosis Brachycephaly and acrocephaly Palpable ridge Flat occiput Frontal bossing

Facial Features

Maxillary retrusion Malar deficiency Relative mandibular prognathism

Ear

Low set ear Conductive hearing loss Bilateral atresia of auditory meatus

Eye

Downslanting palpebral fissure Exophthalmos Iris-coloboma Ptosis Exposure keratitis Hypertelorism Divergent strabismus

Nystagmus Nose

Beaked nose Deviated nasal septum

Mouth

Short upper lip Class III malocclusion with maxillary crowding High arched and narrow palate Cleft palate and bifid uvula

Neurological

Headache Mild to moderate mental retardation Seizures

Musculoskeletal

Cervical spine abnormalities (scoliosis) Calcification of stylohyoid ligament Meniere'disease: (vertigo, dizziness, and/or ringing in the ear).

Respiratory system

Breathing difficulty Sleep apnoea

Cutaneous

Acanthosis nigricans

digits. These features were not elicited in our case. The Apert syndrome which has similar clinical features was ruled out because it was also associated with malformation of hands and feet, with symmetric syndactylus generally including the second, third and fourth digits. Radiographs of the skull in all the 3 cases revealed obliteration of sagittal and coronal suture. In posteroanterior view due to compression of the developing brain on the fused bone a hammered-silver ('beaten metal/

copper beaten') appearance was seen. On lateral Cephelogram hypophyseal cavity enlargement, small paranasal sinuses and the maxillary hypoplasia with shallow orbits, and relative mandibular prognathism were noted (Fig. 6 & Fig. 7). Treatment plan was made which included restoration of 51 and 61 in case 1 and a multidisciplinary approach to relieve the intracranial pressure and restore facial symmetry. ventriculoperitoneal shunting (V-P shunt), by a neurosurgeon along with Cranial vault contouring and monobloc advancement of midface with LeFort I advancement followed by Orthodontic correction of the occlusion was planned in all the 3 cases.

DISCUSSION

A normal birth is always regarded as a reasonable, normal, occurrence. But when a deviation occurs for any reason; the malformation is received with a sense of fear and horror, but at the same time as an evincing example of the power of God. Crouzon's syndrome can be described as triad of cranium deformities, facial anomalies and exophthalmia. French neurosurgeon Crouzon in 1912 first described this condition as an autosomal hereditary with four characteristics exorbitism, retromaxillism, inframaxillism and paradoxic retrogonia. [7,8] The clinical manifestation of a case of Crouzon's syndrome can vary in severity ranging from mild midface deficiency to severe forms presenting as fusion of multiple cranial sutures to obvious midface and eye problems. Acute respiratory distress can lead to upper airway obstruction. Mental retardation is rarely seen. [7,8] Blindness can occur if increased intracranial pressure leading to optic atrophy is not treated. [4] The associated features of Crouzon syndrome are given in Table I. [9-10] This paper reports on the variable craniofacial findings in Crouzon syndrome in correlation with radiological findings which help in arriving at quicker diagnosis which is also quite economical. Patients with Crouzon syndrome are often best cared for by a team of craniofacial experts in which professionals in plastic surgery, ear/nose/throat surgery, dentistry, orthodontics, genetics and audiology can address the patient's multiple needs.

CONCLUSION:

The degree of abnormalities may vary from case to case as well as between members affected in the same family. The suture fusion order and range determine the degree of deformity and inability. The early diagnosis of Crouzon's syndrome is critical to avoid cranial hypertension, visual disturbances, blindness, etc. Therefore, it is important to closely monitor patients diagnosed with Crouzon's syndrome and an early multidisciplinary approach with specific treatment for each condition to prevent late diagnosis effects.

REFERENCES

- 1. Helms JA, Schneider RA. Cranial skeletal biology. Nature 2003;423:326-31.
- 2. Johnson D, Wilkie AOM. Craniosynostosis. Eur J Hum Genet 2011;19:369-76.
- 3. Robin NH, Falk MJ, Haldeman-Englert, CR. FGFR-Related Craniosynostosis Syndromes. Gene Reviews [online], http://www.ncbi.nlm.nih.gov/books/NBK1455 (updated 7 Jun 2011)
- 4. Vivek P, Amitha MH, Kavita R. Crouzon's syndrome: A review of literature and case report. Contemp Clin Dent 2011;2:211-4.
- Dasilva DL, Neto FXP, Carneiro SG, Patheta ACP, Monteiro M, Cunba SC. Crounzon syndrome: Literature and review. Intl Arch Otorhinolaryngol Sao Paulo 2008;12:436-41.
- Imtiaz A, Ambreen A. Diagnosis and Evaluation of Crouzon Syndrome. Journal of the College of Physicians and Surgeons Pakistan 2009;19:318-20.
- Crouzon LE. Dysostose cranio-faciale héréditaire. Bulletin de la Société des Médecins des Hôpitaux de Paris 1912;33:545-55.
- 8. Jarund M, Lauritzen C. Craniofacial dysostosis: Airway obstruction and craniofacial surgery. Scand J Plast Reconstr Surg Hand Surg 1996;30:275-9.
- 9. Cohen MM. Craniosynostosis and syndromes with craniosynostosis: incidence, genetics, penetrance, variability and new syndrome updating. Birth Defects Orig Artic Ser 1979;15:13-63.
- 10. Shotelersuk V, Mahatumarat C, Ittiwut C, Rojvachiranonda N, Srivuthana S, Wacharasindhu S, *et al.* FGFR-2 mutations among Thai children with Crouzon and Apert syndromes. J Craniofac Surg 2003;14:105-7.